ON THE ARITHMETIC CHERN CHARACTER

H. GILLET AND C. SOULÉ

Let X be a proper and flat scheme over \mathbb{Z} , with smooth generic fiber $X_{\mathbb{Q}}$. In [4] we attached to every hermitian vector bundle $\overline{E} = (E, || ||)$ on X a Chern character class lying in the arithmetic Chow groups of X:

$$\widehat{\mathrm{ch}}(\overline{E}) \in \bigoplus_{p \ge 0} \widehat{\mathrm{CH}}^p(X) \otimes \mathbb{Q}$$

Unlike the usual Chern character with values in the ordinary Chow groups, \widehat{ch} is not additive on exact sequences; indeed suppose that \overline{E}_i , i = 0, 1, 2 is a triple of hermitian vector bundles on X, and that we are give an exact sequence

$$0 \to E_0 \to E_1 \to E_2 \to 0$$

of the underlying vector bundles on X, (*i.e.* in which we ignore the hermitian metrics). Then the difference $\widehat{ch}(\overline{E}_0) + \widehat{ch}(\overline{E}_2) - \widehat{ch}(\overline{E}_1)$, is represented by a secondary characteristic class \widetilde{ch} first introduced by Bott and Chern [1] and defined in general in [2]. These Bott-Chern forms measure the defect in additivity of the Chern forms associated by Chern-Weil theory to the hermitian bundles in the exact sequence.

Assume now that the sequence

$$0 \to E_0 \to E_1 \to E_2 \to 0 \tag{(*)}$$

is exact on the generic fiber $X_{\mathbb{Q}}$ but not on the whole of X. We shall prove here (Theorem 1) that $\widehat{ch}(\overline{E}_0) + \widehat{ch}(\overline{E}_2) - \widehat{ch}(\overline{E}_1)$ is the sum of the class of \widetilde{ch} and the localized Chern character of (*) (see [3], 18.1). This result fits well with the idea that characteristic classes with support on the finite fibers of X are the non-archimedean analogs of Bott-Chern classes (see [6]).

In Theorem 2 we compute more explicitly these secondary characteristic classes in a situation encountered when proving a "Kodaira vanishing theorem" on arithmetic surfaces ([7], 3.3).

Notation. If A is an abelian group we let $A_{\mathbb{Q}} = A \bigotimes_{\mathbb{Z}} \mathbb{Q}$.

1. A GENERAL FORMULA

1.1. Let $S = \operatorname{Spec}(\mathbb{Z})$ and $f : X \to S$ a flat scheme of finite type over S. We assume that the generic fiber $X_{\mathbb{Q}}$ is smooth and equidimensional of dimension d. For every integer $p \geq 0$ we denote by $A^{pp}(X_{\mathbb{R}})$ the real vector space of smooth real differential forms α of type (p, p) on the complex manifold $X(\mathbb{C})$ such that

Date: December 10, 2011.

This material is based upon work supported in part by the National Science Foundation under Grant No. DMS-0901373.

 $F^*_{\infty}(\alpha) = (-1)^p \alpha$, where F_{∞} is the anti-holomorphic involution of $X(\mathbb{C})$ induced by complex conjugation. Let

$$A(X) = \bigoplus_{p \ge 0} A^{pp}(X_{\mathbb{R}})$$

and

$$\widetilde{A}(X) = \bigoplus_{p \ge 1} A^{p-1,p-1}(X_{\mathbb{R}}) / (\operatorname{Im}(\partial) + \operatorname{Im}(\overline{\partial})).$$

For every $p \geq 0$ we let $\widehat{\operatorname{CH}}_p(X)$ be the *p*-th arithmetic Chow homology group of X ([5], §2.1, Definition 2). Elements of $\widehat{\operatorname{CH}}_p(X)$ are represented by pairs (Z,g) consisting of a *p*-dimensional cycle Z on X and a Green current g for $Z(\mathbb{C})$ on $X(\mathbb{C})$. Recall that here a Green current for $Z(\mathbb{C})$ is a current (*i.e.* a form with distribution coefficients) of type (p-1, p-1) such that $dd^c(g) + \delta_Z$ is C^{∞} , δ_Z being the current of integration on $Z(\mathbb{C})$). There are canonical morphisms ([5], 2.2.1):

$$\begin{array}{rcl} z: \widetilde{\operatorname{CH}}_p(X) & \to & \operatorname{CH}_p(X) \\ & & & & \\ & & & & Z \end{array}$$

and

$$\omega: \widehat{\operatorname{CH}}_p(X) \to A^{pp}(X_{\mathbb{R}}) (Z,g) \mapsto dd^c(g) + \delta_Z.$$

Let $\operatorname{CH}_p^{\operatorname{fin}}(X)$ be the Chow homology group of cycles on X the support of which does not meet $X_{\mathbb{Q}}$. There is a canonical morphism

$$b: \operatorname{CH}_p^{\operatorname{fin}}(X) \to \widehat{\operatorname{CH}}_p(X)$$

mapping the class of Z to the class of (Z, 0). The composite morphism

$$z \circ b : \operatorname{CH}_p^{\operatorname{fin}}(X) \to \operatorname{CH}_p(X)$$

is the obvious map. Let

$$a: A^{d-p-1,d-p-1}(X_{\mathbb{R}}) \to \widehat{\operatorname{CH}}_p(X)$$

be the map sending η to the class of $(0, \eta)$. We have

$$\omega \circ a(\eta) = dd^c(\eta) \,.$$

1.2. We assume given a sequence

$$0 \to \overline{E}_0 \to \overline{E}_1 \to \overline{E}_2 \to 0$$

of hermitian vector bundles on X, the restriction of which to $X_{\mathbb{Q}}$ is exact. Let

$$\operatorname{ch}^{\operatorname{fin}}(E_{\bullet}) \cap [X] \in \operatorname{CH}_{\operatorname{fin}}(X)_{\mathbb{Q}} = \bigoplus_{p \ge 0} \operatorname{CH}_{p}^{\operatorname{fin}}(X)_{\mathbb{Q}}$$

be the localized Chern character of E_{\bullet} ([3] 18.1), and

$$\widetilde{\operatorname{ch}}(\overline{E}_{\bullet}) \in \widetilde{A}(X)_{\mathbb{Q}}$$

the Bott-Chern secondary characteristic class [2], such that

$$dd^{c} \widetilde{ch}(\overline{E}_{\bullet}) = \sum_{i=0}^{2} (-1)^{i} ch(\overline{E}_{i,\mathbb{C}}),$$

where $\operatorname{ch}(\overline{E}_{i,\mathbb{C}}) \in A(X)$ is the differential form representing the Chern character of the restriction $E_{i,\mathbb{C}}$ of E_i to $X(\mathbb{C})$. Finally, if i = 0, 1, 2, we let

$$\widehat{\mathrm{ch}}(\overline{E}_i)\cap [X]\in \widehat{\mathrm{CH}}(X)_{\mathbb{Q}}= \underset{p\geq 0}{\oplus} \ \widehat{\mathrm{CH}}_p(X)_{\mathbb{Q}}$$

be the arithmetic Chern character of \overline{E}_i ([4] 4.1, [5] Theorem 4).

Theorem 1. The following equality holds in $\widehat{CH}(X)_{\mathbb{Q}}$:

$$\sum_{i=0}^{2} (-1)^{i} \widehat{\mathrm{ch}}(\overline{E}_{i}) \cap [X] = b \left(\mathrm{ch}^{\mathrm{fin}}(E_{\bullet}) \cap [X] \right) + a \left(\widetilde{\mathrm{ch}}(\overline{E}_{\bullet}) \right).$$

1.3. This theorem is a special case of Lemma 21 in [5], though this may not be immediately apparent. Therefore, for the sake of completeness, we give a proof here.

1.4. To prove Theorem 1 we consider the Grassmannian graph construction applied to E_{\bullet} ([3] 18.1, [5] 1.1). It consists of a proper surjective map

$$\pi: W \to X \times \mathbb{P}^1$$

such that, if $\phi \subset X$ is the support of the homology of E_{\bullet} (hence $\phi_{\mathbb{Q}}$ is empty), the restriction of π onto $(X - \phi) \times \mathbb{P}^1$ and $X \times \mathbb{A}^1$ is an isomorphism. The effective Cartier divisor

$$W_{\infty} = \pi^{-1}(X \times \{\infty\})$$

is the union of the Zariski closure \widetilde{X} of $(X - \phi) \times \{\infty\}$ with $Y = \pi^{-1}(\phi \times \{\infty\})$. The sequence E_{\bullet} extends to a complex

$$0 \to \widetilde{E}_0 \to \widetilde{E}_1 \to \widetilde{E}_2 \to 0 \,,$$

which is isomorphic to the pull-back of E_{\bullet} over $X \times \mathbb{A}^1$. The restriction of \widetilde{E}_{\bullet} to \widetilde{X} is canonically split exact. On $W_{\mathbb{Q}} = X_{\mathbb{Q}} \times \mathbb{P}^1_{\mathbb{Q}}$ the sequence \widetilde{E}_{\bullet} is exact; it coincides with E_{\bullet} (resp. $0 \to E_0 \to E_0 \oplus E_2 \to E_2 \to 0$) when restricted to $X_{\mathbb{Q}} \times \{0\}$ (resp. $X_{\mathbb{Q}} \times \{\infty\}$). We choose a metric on \widetilde{E}_{\bullet} for which these isomorphisms are isometries.

1.5. Let

$$x = \sum_{i=0}^{2} (-1)^{i} \widehat{\mathrm{ch}}(\overline{\widetilde{E}}_{i}),$$

and denote by t the standard parameter of $\mathbb{A}^1.$ In the arithmetic Chow homology of W we have

$$0 = x \cap (W_0 - W_{\infty}, -\log |t|^2).$$

If x is the class of (Z, g), with Z meeting properly W_0 and W_{∞} , we get

$$x \cap (W_0 - W_{\infty}, -\log |t|^2) = (Z \cap (W_0 - W_{\infty}), g * (-\log |t|^2)),$$

where the *-product is equal to

$$g * (-\log |t|^2) = g(\delta_{W_0} - \delta_{W_\infty}) - \operatorname{ch}(\overline{\widetilde{E}}_{\bullet}) \log |t|^2.$$

Since $W_{\infty} = \widetilde{X} \cup Y$, with $Y_{\mathbb{Q}} = \emptyset$, we get

(1)
$$0 = x \cap (W_0 - W_{\infty}, -\log |t|^2)$$

= $(Z \cap W_0, g \, \delta_{W_0}) - (Z \cap \widetilde{X}, g \, \delta_{\widetilde{X}}) - (Z \cap Y, 0) - (0, \operatorname{ch}(\overline{\widetilde{E}}_{\bullet}) \log |t|^2).$

The restriction of $\overline{\widetilde{E}}_{\bullet}$ to \widetilde{X} is split exact, therefore

$$(Z \cap \widetilde{X}, g \,\delta_{\widetilde{X}}) = 0$$

Applying π_* to (1) we get

(2)
$$0 = \widehat{\mathrm{ch}}(\overline{E}_{\bullet}) - \pi_*(Z \cap Y), 0) - (0, \pi_*(\mathrm{ch}(\widetilde{E}_{\bullet}) \log |t|^2).$$

By definition of the localized Chern character ([3], 18.1, (14))

(3)
$$\pi_*(Z \cap Y) = \operatorname{ch}^{\operatorname{fin}}(E_{\bullet}) \cap [X]$$

in $\operatorname{CH}^{\operatorname{fin}}(X)_{\mathbb{Q}}$. On the other hand we deduce from [4], (1.2.3.1), (1.2.3.2) that

(4)
$$-\pi_*(\operatorname{ch}(\overline{\widetilde{E}}_1)\log|t|^2) = \operatorname{ch}(\overline{E}_{\bullet})$$

and upon replacing t by 1/t, as in the proof of (1.3.2) in [4], we see that

(5)
$$\pi_*(\operatorname{ch}(\overline{\widetilde{E}}_{\bullet})\log|t|^2) = -\pi_*(\operatorname{ch}(\overline{\widetilde{E}}_1)\log|t|^2) .$$

Theorem 1 follows from (2), (3), (4), (5).

2. A special case

2.1. We keep the hypotheses of the previous section, and we assume that X is normal, d = 1, E_0 and E_2 have rank one and the metrics on E_0 and E_2 are induced by the metric on E_1 . Finally, we assume that there exists a closed subscheme ϕ in X which is 0-dimensional and such that there is an exact sequence of sheaves on X

(6)
$$0 \to E_0 \to E_1 \to E_2 \otimes I_\phi \to 0$$

where I_{ϕ} is the ideal of definition of ϕ .

Let

$$\widetilde{c}_2 \in A^{1,1}(X_{\mathbb{R}})/(\mathrm{Im}(\partial) + \mathrm{Im}(\overline{\partial}))$$

be the second Bott-Chern class of (6), $\Gamma(\phi, \mathcal{O}_{\phi})$ the finite ring of functions on ϕ and $\#\Gamma(\phi, \mathcal{O}_{\phi})$ its order. Let

$$f_*: \widehat{\operatorname{CH}}_0(X)_{\mathbb{Q}} \to \widehat{\operatorname{CH}}_0(S) = \mathbb{R}$$

be the direct image morphism.

Theorem 2. We have an equality of real numbers

$$f_*(\widehat{c}_2(\overline{E}_1) \cap [X]) = f_*(\widehat{c}_1(\overline{E}_0) \, \widehat{c}_1(\overline{E}_2) \cap [X]) - \int_{X(\mathbb{C})} \widetilde{c}_2 + \log \# \Gamma(\phi, \mathcal{O}_\phi) \, .$$

2.2. To prove Theorem 2 we remark first that

$$\widehat{c}_1(\overline{E}_1) = \widehat{c}_1(\overline{E}_0) + \widehat{c}_1(\overline{E}_2),$$

because the metrics on E_0 and E_2 are induced from \overline{E}_1 . Therefore, since $ch_2 = -c_2 + \frac{c_1^2}{2}$, we get

$$\widehat{\mathrm{ch}}_{2}(\overline{E}_{1}) = -\widehat{c}_{2}(\overline{E}_{1}) + \frac{(\widehat{c}_{1}(\overline{E}_{0}) + \widehat{c}_{1}(\overline{E}_{2}))^{2}}{2}$$

$$= -\widehat{c}_{2}(\overline{E}_{1}) + c_{1}(\overline{E}_{0})\widehat{c}_{1}(\overline{E}_{2}) + \widehat{\mathrm{ch}}_{2}(\overline{E}_{0}) + \widehat{\mathrm{ch}}_{2}(\overline{E}_{2})$$

By Theorem 1, this implies that

(7)
$$\widehat{c}_2(\overline{E}_1) \cap [X] = \widehat{c}_1(\overline{E}_0) \, \widehat{c}_1(\overline{E}_2) \cap [X] + b \left(\operatorname{ch}^{\operatorname{fin}}(E_{\bullet}) \cap [X]\right) + a \left(\operatorname{ch}^{\widetilde{\operatorname{ch}}}(\overline{E}_{\bullet})\right).$$

Since $\widetilde{ch}_0(\overline{E}_{\bullet})$ and $\widetilde{ch}_1(\overline{E}_{\bullet})$ vanish we have

$$\widetilde{\operatorname{ch}}(\overline{E}_{\bullet}) = -\widetilde{c}_2.$$

Therefore, if we apply f_* to (7), we get

$$f_*(\widehat{c}_2(\overline{E}_1) \cap [X]) = f_*(\widehat{c}_1(\overline{E}_0) \,\widehat{c}_1(\overline{E}_2) \cap [X]) - \int_{X(\mathbb{C})} \widetilde{c}_2 + f_*(b(\operatorname{ch}^{\operatorname{fin}}(E_{\bullet}) \cap [X])),$$

and we are left with showing that

(8)
$$f_* \circ b \left(\operatorname{ch}^{\operatorname{fin}}(E_{\bullet}) \cap [X] \right) = \log \# \Gamma(\phi, \mathcal{O}_{\phi}).$$

Let $|\phi| = \{P_1, \dots, P_n\} \subset X$ be the support of ϕ and $\psi = f(|\phi|) \subset S$. The following diagram is commutative:

$$\begin{array}{cccc}
\operatorname{CH}_{0}(\phi) & & \xrightarrow{b} & \widehat{\operatorname{CH}}_{0}(X) \\
& & & & & \downarrow f_{*} \\
& & & & \downarrow f_{*} \\
\operatorname{CH}_{0}(\psi) & & \xrightarrow{b} & \widehat{\operatorname{CH}}_{0}(S) = \mathbb{R},
\end{array}$$

where

$$b: \mathrm{CH}_0(\psi) = \mathbb{Z}^{\psi} \to \mathbb{R}$$

maps $(n_p)_{p \in \psi}$ to $\sum_p n_p \log(p)$.

For any prime $p \in \psi$ we let $\mathbb{Z}_{(p)}$ be the local ring of S at p and we let $\ell_p = \ell_p(\phi) \ge 0$ be the length of the finite $\mathbb{Z}_{(p)}$ -module $\Gamma(\phi, \mathcal{O}_{\phi}) \otimes \mathbb{Z}_{(p)}$. Clearly

$$\log \# \Gamma(\phi, \mathcal{O}_{\phi}) = \sum_{p \in \psi} \ell_p \log(p) \,,$$

hence it is enough to prove that

(9)
$$f_*(\mathrm{ch}^{\mathrm{fin}}(E_{\bullet}) \cap [X]) = (\ell_p) \in \mathrm{CH}_0(\psi)_{\mathbb{Q}} = \mathbb{Q}^{\psi}.$$

The complex E_{\bullet} defines an element

$$[E_{\bullet}] = \sum_{i=1}^{n} [\mathcal{O}_{\phi, P_i}] \in K_0^{\phi}(X) = \bigoplus_{i=1}^{n} K_0^{P_i}(X).$$

To prove (9), by replacing X by an affine neighbourhood of P, one can assume that $|\phi| = \{P\}$, and it is enough to show that, if p = f(P),

$$f_*(\mathrm{ch}^{\mathrm{fin}}(\mathcal{O}_{\phi,P})\cap [X]) = \ell_p(\mathcal{O}_{\phi,P})[p].$$

Now recall that, if \mathcal{F} is a coherent sheaf on a scheme X of finite type over S, supported on a finite set of closed points, the associated 0-cycle

$$[\mathcal{F}] = \sum_{P \in |\mathcal{F}|} \ell_p(\mathcal{F}_P)[P] \in Z_0(X)$$

is such that, if $f: X \to Y$ is a proper morphism of schemes of finite type over S,

$$f_*[\mathcal{F}] = [f_*(\mathcal{F})]$$

([3], 15.1.5). Hence it is enough to show that

(10)
$$\operatorname{ch}^{P}(\mathcal{O}_{\phi,P}) = \ell_{p}(\mathcal{O}_{\phi,P})[P] \in \operatorname{CH}_{0}(P)_{\mathbb{Q}} \simeq \mathbb{Q}.$$

Replacing X by an affine neighbourhood of P, we may assume that we have an exact sequence

(11)
$$0 \longrightarrow \mathcal{O}_X \xrightarrow{\alpha} \mathcal{O}_X^2 \xrightarrow{\beta} \mathcal{O}_X \longrightarrow \mathcal{O}_\phi \longrightarrow 0.$$

Hence the ideal $I_{\phi} \subset \mathcal{O}_X(X)$ is generated by two elements β_1 and β_2 . Since X is normal, its local rings satisfy Serre property S_2 and, as $\dim(X) = 2$, X is Cohen-Macaulay. Since β_1 and β_2 span an ideal of height two, (β_1, β_2) is a regular sequence and the sequence (11) is isomorphic to the Koszul resolution of $\mathcal{O}_{\phi} = \mathcal{O}_X/(\beta_1, \beta_2)$. Now (10) can be deduced from the following general fact:

Lemma 1. Let X = Spec(A) be an affine scheme and $Z \subset X$ a closed subset such that the ideal $I_Z = (x_1, \ldots, x_n)$ is generated by a regular sequence (x_1, \ldots, x_n) . Let $K_{\bullet}(x_1, \ldots, x_n)$ be the Koszul complex associated to (x_1, \ldots, x_n) . Then

$$\operatorname{ch}_{n}^{Z}(K_{\bullet}(x_{1},\ldots,x_{n})) = [\mathcal{O}_{Z}] \in \operatorname{CH}_{0}(Z)_{\mathbb{Q}}$$

Proof. The Grassmannian-graph construction on $K_{\bullet}(x_1, \ldots, x_n)$ coincides with the deformation to the normal bundle of Z in X. If W is defined as in 1.4,

$$W_{\infty} = \widetilde{X} \cup \widehat{\mathbb{P}}(N_{Z/X}) \,,$$

where \widetilde{X} is the blow up of X along Z, and $\widehat{P}(N_{Z/X})$ is the projective completion of the normal bundle of Z in X. The pull back of the Koszul complex $K_{\bullet}(x_1,\ldots,x_n)$ to $W \setminus W_{\infty}$ extends to a complex $\widetilde{K}_{\bullet}(x_1,\ldots,x_n)$ on W. The restriction of $\widetilde{K}_{\bullet}(x_1,\ldots,x_n)$ to \widetilde{X} is acyclic while the restriction of $\widetilde{K}_{\bullet}(x_1,\ldots,x_n)$ to $\widehat{\mathbb{P}}(N_{Z/X})$ is a resolution of the structure sheaf of the zero section $Z \subset N_{Z/X} \subset \widehat{\mathbb{P}}(N_{Z/X})$.

Now observe that $Z \subset \widehat{\mathbb{P}}(N_{Z/X})$ is an intersection of Cartier divisors D_1, \ldots, D_n , hence

$$\operatorname{ch}(\widetilde{K}_{\bullet}(x_{1},\ldots,x_{n})\mid_{\widehat{\mathbb{P}}(N_{Z/X})})$$

$$= \prod_{i=1}^{n} \operatorname{ch}(\mathcal{O}(-D_{i}) \to \mathcal{O}_{\widehat{\mathbb{P}}(N_{Z/X})})$$

$$= \prod_{i=1}^{n} \operatorname{ch}(\mathcal{O}(D_{i})).$$

Since

$$\operatorname{ch}(\mathcal{O}_{D_i}) = \operatorname{ch}_1(\mathcal{O}_{D_i}) + x_i = [D_i] + x_i$$

where x_i has degree ≥ 2 , we get

$$\operatorname{ch}(\widetilde{K}_{\bullet}(x_1,\ldots,x_n)\mid_{\widehat{\mathbb{P}}(N_{Z/X})}) = [D_1]\ldots[D_n] = [Z].$$

This ends the proof of Lemma 1 and Theorem 2.

References

- [1] Bott, R., Chern, S.S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. *Acta Math.* **114** (1965), 71–112.
- Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles I, II, III. Comm. Math. Physics 115 (1988), 49–78, 79–126, 301–351.
- [3] Fulton, W.: Intersection Theory. Springer 1984.
- Gillet, H., Soulé, C.: Characteristic classes for algebraic vector bundles with hermitian metrics I, II. Annals of Math. 131 (1990), 163–203, 205–238.
- [5] Gillet, H., Soulé, C.: An arithmetic Riemann-Roch theorem. Invent. Math. 110 (1992), 473– 543.
- [6] Gillet, H., Soulé, C.: Direct images in non-archimedean Arakelov theory. Annales de l'institut Fourier, 50, 2000, 363-399.
- [7] Soulé, C.: A vanishing theorem on arithmetic surfaces. Invent. Math. 116 (1994), no. 1-3, 577-599.

E-mail address: gillet@uic.edu

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, IL 60607-7045, USA

E-mail address: soule@ihes.fr

IHÉS, 35 ROUTE DE CHARTRES, 91440 BURES-SUR-YVETTE, FRANCE