ON THE ARITHMETIC CHERN CHARACTER

H. GILLET AND C. SOULÉ

Let X be a proper and flat scheme over \mathbb{Z}, with smooth generic fiber $X_{\mathbb{Q}}$. In [4] we attached to every hermitian vector bundle $\bar{E}=(E,\| \|)$ on X a Chern character class lying in the arithmetic Chow groups of X :

$$
\widehat{\operatorname{ch}}(\bar{E}) \in \underset{p \geq 0}{\oplus} \widehat{\mathrm{CH}}^{p}(X) \otimes \mathbb{Q} .
$$

Unlike the usual Chern character with values in the ordinary Chow groups, $\widehat{\text { ch }}$ is not additive on exact sequences; indeed suppose that $\bar{E}_{i}, i=0,1,2$ is a triple of hermitian vector bundles on X , and that we are give an exact sequence

$$
0 \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2} \rightarrow 0
$$

of the underlying vector bundles on X, (i.e. in which we ignore the hermitian metrics). Then the difference $\widehat{\operatorname{ch}}\left(\bar{E}_{0}\right)+\widehat{\operatorname{ch}}\left(\bar{E}_{2}\right)-\widehat{\operatorname{ch}}\left(\bar{E}_{1}\right)$, is represented by a secondary characteristic class ch first introduced by Bott and Chern [1] and defined in general in [2]. These Bott-Chern forms measure the defect in additivity of the Chern forms associated by Chern-Weil theory to the hermitian bundles in the exact sequence.

Assume now that the sequence

$$
\begin{equation*}
0 \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2} \rightarrow 0 \tag{*}
\end{equation*}
$$

is exact on the generic fiber $X_{\mathbb{Q}}$ but not on the whole of X. We shall prove here (Theorem 1) that $\widehat{\operatorname{ch}}\left(\bar{E}_{0}\right)+\widehat{\operatorname{ch}}\left(\bar{E}_{2}\right)-\widehat{\operatorname{ch}}\left(\bar{E}_{1}\right)$ is the sum of the class of $\widetilde{\operatorname{ch}}$ and the localized Chern character of $(*)$ (see [3], 18.1). This result fits well with the idea that characteristic classes with support on the finite fibers of X are the non-archimedean analogs of Bott-Chern classes (see [6]).

In Theorem 2 we compute more explicitly these secondary characteristic classes in a situation encountered when proving a "Kodaira vanishing theorem" on arithmetic surfaces ([7], 3.3).

Notation. If A is an abelian group we let $A_{\mathbb{Q}}=A \underset{\mathbb{Z}}{\otimes} \mathbb{Q}$.

1. A general formula

1.1. Let $S=\operatorname{Spec}(\mathbb{Z})$ and $f: X \rightarrow S$ a flat scheme of finite type over S. We assume that the generic fiber $X_{\mathbb{Q}}$ is smooth and equidimensional of dimension d. For every integer $p \geq 0$ we denote by $A^{p p}\left(X_{\mathbb{R}}\right)$ the real vector space of smooth real differential forms α of type (p, p) on the complex manifold $X(\mathbb{C})$ such that

[^0]$F_{\infty}^{*}(\alpha)=(-1)^{p} \alpha$, where F_{∞} is the anti-holomorphic involution of $X(\mathbb{C})$ induced by complex conjugation. Let
$$
A(X)=\underset{p \geq 0}{\oplus} A^{p p}\left(X_{\mathbb{R}}\right)
$$
and
$$
\widetilde{A}(X)=\underset{p \geq 1}{\oplus} A^{p-1, p-1}\left(X_{\mathbb{R}}\right) /(\operatorname{Im}(\partial)+\operatorname{Im}(\bar{\partial}))
$$

For every $p \geq 0$ we let $\widehat{\mathrm{CH}}_{p}(X)$ be the p-th arithmetic Chow homology group of $X\left([5], \S 2.1\right.$, Definition 2). Elements of $\widehat{\mathrm{CH}}_{p}(X)$ are represented by pairs (Z, g) consisting of a p-dimensional cycle Z on X and a Green current g for $Z(\mathbb{C})$ on $X(\mathbb{C})$. Recall that here a Green current for $Z(\mathbb{C})$ is a current (i.e. a form with distribution coefficients) of type $(p-1, p-1)$ such that $d d^{c}(g)+\delta_{Z}$ is C^{∞}, δ_{Z} being the current of integration on $Z(\mathbb{C})$). There are canonical morphisms ([5], 2.2.1):

$$
\begin{aligned}
z: \widehat{\mathrm{CH}}_{p}(X) & \rightarrow \mathrm{CH}_{p}(X) \\
(Z, g) & \mapsto Z
\end{aligned}
$$

and

$$
\begin{aligned}
\omega: \widehat{\mathrm{CH}}_{p}(X) & \rightarrow A^{p p}\left(X_{\mathbb{R}}\right) \\
(Z, g) & \mapsto d d^{c}(g)+\delta_{Z}
\end{aligned}
$$

Let $\mathrm{CH}_{p}^{\mathrm{fin}}(X)$ be the Chow homology group of cycles on X the support of which does not meet $X_{\mathbb{Q}}$. There is a canonical morphism

$$
b: \mathrm{CH}_{p}^{\mathrm{fin}}(X) \rightarrow \widehat{\mathrm{CH}}_{p}(X)
$$

mapping the class of Z to the class of $(Z, 0)$. The composite morphism

$$
z \circ b: \mathrm{CH}_{p}^{\mathrm{fin}}(X) \rightarrow \mathrm{CH}_{p}(X)
$$

is the obvious map. Let

$$
a: A^{d-p-1, d-p-1}\left(X_{\mathbb{R}}\right) \rightarrow \widehat{\mathrm{CH}}_{p}(X)
$$

be the map sending η to the class of $(0, \eta)$. We have

$$
\omega \circ a(\eta)=d d^{c}(\eta)
$$

1.2. We assume given a sequence

$$
0 \rightarrow \bar{E}_{0} \rightarrow \bar{E}_{1} \rightarrow \bar{E}_{2} \rightarrow 0
$$

of hermitian vector bundles on X, the restriction of which to $X_{\mathbb{Q}}$ is exact. Let

$$
\operatorname{ch}^{\mathrm{fin}}\left(E_{\bullet}\right) \cap[X] \in \mathrm{CH}_{\mathrm{fin}}(X)_{\mathbb{Q}}=\underset{p \geq 0}{\oplus} \mathrm{CH}_{p}^{\mathrm{fin}}(X)_{\mathbb{Q}}
$$

be the localized Chern character of $E_{\bullet}([3] 18.1)$, and

$$
\widetilde{\operatorname{ch}}\left(\bar{E}_{\bullet}\right) \in \widetilde{A}(X)_{\mathbb{Q}}
$$

the Bott-Chern secondary characteristic class [2], such that

$$
d d^{c} \widetilde{\operatorname{ch}}\left(\bar{E}_{\bullet}\right)=\sum_{i=0}^{2}(-1)^{i} \operatorname{ch}\left(\bar{E}_{i, \mathbb{C}}\right)
$$

where $\operatorname{ch}\left(\bar{E}_{i, \mathbb{C}}\right) \in A(X)$ is the differential form representing the Chern character of the restriction $E_{i, \mathbb{C}}$ of E_{i} to $X(\mathbb{C})$. Finally, if $i=0,1,2$, we let

$$
\widehat{\operatorname{ch}}\left(\bar{E}_{i}\right) \cap[X] \in \widehat{\mathrm{CH}}(X)_{\mathbb{Q}}=\underset{p \geq 0}{\oplus} \widehat{\mathrm{CH}}_{p}(X)_{\mathbb{Q}}
$$

be the arithmetic Chern character of $\bar{E}_{i}([4] 4.1$, [5] Theorem 4).
Theorem 1. The following equality holds in $\widehat{\mathrm{CH}}(X)_{\mathbb{Q}}$:

$$
\sum_{i=0}^{2}(-1)^{i} \widehat{\operatorname{ch}}\left(\bar{E}_{i}\right) \cap[X]=b\left(\operatorname{ch}^{\mathrm{fin}}\left(E_{\bullet}\right) \cap[X]\right)+a\left(\widetilde{\mathrm{ch}}\left(\bar{E}_{\bullet}\right)\right) .
$$

1.3. This theorem is a special case of Lemma 21 in [5], though this may not be immediately apparent. Therefore, for the sake of completeness, we give a proof here.
1.4. To prove Theorem 1 we consider the Grassmannian graph construction applied to E_{\bullet} ([3] 18.1, [5] 1.1). It consists of a proper surjective map

$$
\pi: W \rightarrow X \times \mathbb{P}^{1}
$$

such that, if $\phi \subset X$ is the support of the homology of E_{\bullet} (hence $\phi_{\mathbb{Q}}$ is empty), the restriction of π onto $(X-\phi) \times \mathbb{P}^{1}$ and $X \times \mathbb{A}^{1}$ is an isomorphism. The effective Cartier divisor

$$
W_{\infty}=\pi^{-1}(X \times\{\infty\})
$$

is the union of the Zariski closure \widetilde{X} of $(X-\phi) \times\{\infty\}$ with $Y=\pi^{-1}(\phi \times\{\infty\})$. The sequence E_{\bullet} extends to a complex

$$
0 \rightarrow \widetilde{E}_{0} \rightarrow \widetilde{E}_{1} \rightarrow \widetilde{E}_{2} \rightarrow 0
$$

which is isomorphic to the pull-back of E_{\bullet} over $X \times \mathbb{A}^{1}$. The restriction of \widetilde{E}_{\bullet} to \widetilde{X} is canonically split exact. On $W_{\mathbb{Q}}=X_{\mathbb{Q}} \times \mathbb{P}_{\mathbb{Q}}^{1}$ the sequence \widetilde{E}_{\bullet} is exact; it coincides with E_{\bullet} (resp. $0 \rightarrow E_{0} \rightarrow E_{0} \oplus E_{2} \rightarrow E_{2} \rightarrow 0$) when restricted to $X_{\mathbb{Q}} \times\{0\}$ (resp. $X_{\mathbb{Q}} \times\{\infty\}$). We choose a metric on \widetilde{E}_{\bullet} for which these isomorphisms are isometries.
1.5. Let

$$
x=\sum_{i=0}^{2}(-1)^{i} \widehat{\operatorname{ch}}\left(\overline{\widetilde{E}}_{i}\right)
$$

and denote by t the standard parameter of \mathbb{A}^{1}. In the arithmetic Chow homology of W we have

$$
0=x \cap\left(W_{0}-W_{\infty},-\log |t|^{2}\right)
$$

If x is the class of (Z, g), with Z meeting properly W_{0} and W_{∞}, we get

$$
x \cap\left(W_{0}-W_{\infty},-\log |t|^{2}\right)=\left(Z \cap\left(W_{0}-W_{\infty}\right), g *\left(-\log |t|^{2}\right)\right),
$$

where the $*$-product is equal to

$$
g *\left(-\log |t|^{2}\right)=g\left(\delta_{W_{0}}-\delta_{W_{\infty}}\right)-\operatorname{ch}\left(\widetilde{\widetilde{E}}_{\bullet}\right) \log |t|^{2}
$$

Since $W_{\infty}=\widetilde{X} \cup Y$, with $Y_{\mathbb{Q}}=\emptyset$, we get

$$
\begin{align*}
& =x \cap\left(W_{0}-W_{\infty},-\log |t|^{2}\right) \tag{1}\\
& =\left(Z \cap W_{0}, g \delta_{W_{0}}\right)-\left(Z \cap \widetilde{X}, g \delta_{\widetilde{X}}\right)-(Z \cap Y, 0)-\left(0, \operatorname{ch}\left(\overline{\widetilde{E}}_{\bullet}\right) \log |t|^{2}\right)
\end{align*}
$$

The restriction of $\overline{\widetilde{E}}_{\bullet}$ to \widetilde{X} is split exact, therefore

$$
\left(Z \cap \tilde{X}, g \delta_{\tilde{X}}\right)=0
$$

Applying π_{*} to (1) we get

$$
\begin{equation*}
\left.0=\widehat{\operatorname{ch}}\left(\bar{E}_{\bullet}\right)-\pi_{*}(Z \cap Y), 0\right)-\left(0, \pi_{*}\left(\operatorname{ch}\left(\overline{\widetilde{E}}_{\bullet}\right) \log |t|^{2}\right)\right. \tag{2}
\end{equation*}
$$

By definition of the localized Chern character ([3], 18.1, (14))

$$
\begin{equation*}
\pi_{*}(Z \cap Y)=\operatorname{ch}^{\mathrm{fin}}\left(E_{\bullet}\right) \cap[X] \tag{3}
\end{equation*}
$$

in $\mathrm{CH}^{\text {fin }}(X)_{\mathbb{Q}}$. On the other hand we deduce from [4], (1.2.3.1), (1.2.3.2) that

$$
\begin{equation*}
-\pi_{*}\left(\operatorname{ch}\left(\overline{\widetilde{E}}_{1}\right) \log |t|^{2}\right)=\widetilde{\operatorname{ch}}\left(\bar{E}_{\bullet}\right) \tag{4}
\end{equation*}
$$

and upon replacing t by $1 / t$, as in the proof of (1.3.2) in [4], we see that

$$
\begin{equation*}
\pi_{*}\left(\operatorname{ch}\left(\overline{\widetilde{E}}_{\bullet}\right) \log |t|^{2}\right)=-\pi_{*}\left(\operatorname{ch}\left(\overline{\widetilde{E}}_{1}\right) \log |t|^{2}\right) \tag{5}
\end{equation*}
$$

Theorem 1 follows from (2), (3), (4), (5).

2. A Special case

2.1. We keep the hypotheses of the previous section, and we assume that X is normal, $d=1, E_{0}$ and E_{2} have rank one and the metrics on E_{0} and E_{2} are induced by the metric on E_{1}. Finally, we assume that there exists a closed subscheme ϕ in X which is 0 -dimensional and such that there is an exact sequence of sheaves on X

$$
\begin{equation*}
0 \rightarrow E_{0} \rightarrow E_{1} \rightarrow E_{2} \otimes I_{\phi} \rightarrow 0 \tag{6}
\end{equation*}
$$

where I_{ϕ} is the ideal of definition of ϕ.
Let

$$
\widetilde{c}_{2} \in A^{1,1}\left(X_{\mathbb{R}}\right) /(\operatorname{Im}(\partial)+\operatorname{Im}(\bar{\partial}))
$$

be the second Bott-Chern class of $(6), \Gamma\left(\phi, \mathcal{O}_{\phi}\right)$ the finite ring of functions on ϕ and $\# \Gamma\left(\phi, \mathcal{O}_{\phi}\right)$ its order. Let

$$
f_{*}: \widehat{\mathrm{CH}}_{0}(X)_{\mathbb{Q}} \rightarrow \widehat{\mathrm{CH}}_{0}(S)=\mathbb{R}
$$

be the direct image morphism.
Theorem 2. We have an equality of real numbers

$$
f_{*}\left(\widehat{c}_{2}\left(\bar{E}_{1}\right) \cap[X]\right)=f_{*}\left(\widehat{c}_{1}\left(\bar{E}_{0}\right) \widehat{c}_{1}\left(\bar{E}_{2}\right) \cap[X]\right)-\int_{X(\mathbb{C})} \widetilde{c}_{2}+\log \# \Gamma\left(\phi, \mathcal{O}_{\phi}\right)
$$

2.2. To prove Theorem 2 we remark first that

$$
\widehat{c}_{1}\left(\bar{E}_{1}\right)=\widehat{c}_{1}\left(\bar{E}_{0}\right)+\widehat{c}_{1}\left(\bar{E}_{2}\right)
$$

because the metrics on E_{0} and E_{2} are induced from \bar{E}_{1}. Therefore, since $\mathrm{ch}_{2}=$ $-c_{2}+\frac{c_{1}^{2}}{2}$, we get

$$
\begin{aligned}
\widehat{\operatorname{ch}}_{2}\left(\bar{E}_{1}\right) & =-\widehat{c}_{2}\left(\bar{E}_{1}\right)+\frac{\left(\widehat{c}_{1}\left(\bar{E}_{0}\right)+\widehat{c}_{1}\left(\bar{E}_{2}\right)\right)^{2}}{2} \\
& =-\widehat{c}_{2}\left(\bar{E}_{1}\right)+c_{1}\left(\bar{E}_{0}\right) \widehat{c}_{1}\left(\bar{E}_{2}\right)+\widehat{\operatorname{ch}_{2}}\left(\bar{E}_{0}\right)+\widehat{\operatorname{ch}_{2}}\left(\bar{E}_{2}\right)
\end{aligned}
$$

By Theorem 1, this implies that

$$
\begin{equation*}
\widehat{c}_{2}\left(\bar{E}_{1}\right) \cap[X]=\widehat{c}_{1}\left(\bar{E}_{0}\right) \widehat{c}_{1}\left(\bar{E}_{2}\right) \cap[X]+b\left(\operatorname{ch}^{\mathrm{fin}}\left(E_{\bullet}\right) \cap[X]\right)+a\left(\widetilde{\operatorname{ch}}\left(\bar{E}_{\bullet}\right)\right) \tag{7}
\end{equation*}
$$

Since $\widetilde{c h}_{0}\left(\bar{E}_{\bullet}\right)$ and $\widetilde{c h}_{1}\left(\bar{E}_{\bullet}\right)$ vanish we have

$$
\widetilde{\operatorname{ch}}\left(\bar{E}_{\bullet}\right)=-\widetilde{c}_{2} .
$$

Therefore, if we apply f_{*} to (7), we get

$$
f_{*}\left(\widehat{c}_{2}\left(\bar{E}_{1}\right) \cap[X]\right)=f_{*}\left(\widehat{c}_{1}\left(\bar{E}_{0}\right) \widehat{c}_{1}\left(\bar{E}_{2}\right) \cap[X]\right)-\int_{X(\mathbb{C})} \widetilde{c}_{2}+f_{*}\left(b\left(\operatorname{ch}^{\mathrm{fin}}\left(E_{\bullet}\right) \cap[X]\right)\right),
$$

and we are left with showing that

$$
\begin{equation*}
f_{*} \circ b\left(\operatorname{ch}^{\mathrm{fin}}\left(E_{\bullet}\right) \cap[X]\right)=\log \# \Gamma\left(\phi, \mathcal{O}_{\phi}\right) . \tag{8}
\end{equation*}
$$

Let $|\phi|=\left\{P_{1}, \cdots, P_{n}\right\} \subset X$ be the support of ϕ and $\psi=f(|\phi|) \subset S$. The following diagram is commutative:

where

$$
b: \mathrm{CH}_{0}(\psi)=\mathbb{Z}^{\psi} \rightarrow \mathbb{R}
$$

maps $\left(n_{p}\right)_{p \in \psi}$ to $\sum_{p} n_{p} \log (p)$.
For any prime $p \in \psi$ we let $\mathbb{Z}_{(p)}$ be the local ring of S at p and we let $\ell_{p}=$ $\ell_{p}(\phi) \geq 0$ be the length of the finite $\mathbb{Z}_{(p)}$-module $\Gamma\left(\phi, \mathcal{O}_{\phi}\right) \otimes \mathbb{Z}_{(p)}$. Clearly

$$
\log \# \Gamma\left(\phi, \mathcal{O}_{\phi}\right)=\sum_{p \in \psi} \ell_{p} \log (p),
$$

hence it is enough to prove that

$$
\begin{equation*}
f_{*}\left(\operatorname{ch}^{\mathrm{fin}}\left(E_{\bullet}\right) \cap[X]\right)=\left(\ell_{p}\right) \in \mathrm{CH}_{0}(\psi)_{\mathbb{Q}}=\mathbb{Q}^{\psi} . \tag{9}
\end{equation*}
$$

The complex E_{\bullet} defines an element

$$
\left[E_{\bullet}\right]=\sum_{i=1}^{n}\left[\mathcal{O}_{\phi, P_{i}}\right] \in K_{0}^{\phi}(X)=\bigoplus_{i=1}^{n} K_{0}^{P_{i}}(X) .
$$

To prove (9), by replacing X by an affine neighbourhood of P, one can assume that $|\phi|=\{P\}$, and it is enough to show that, if $p=f(P)$,

$$
f_{*}\left(\operatorname{ch}^{\mathrm{fin}}\left(\mathcal{O}_{\phi, P}\right) \cap[X]\right)=\ell_{p}\left(\mathcal{O}_{\phi, P}\right)[p] .
$$

Now recall that, if \mathcal{F} is a coherent sheaf on a scheme X of finite type over S, supported on a finite set of closed points, the associated 0 -cycle

$$
[\mathcal{F}]=\sum_{P \in|\mathcal{F}|} \ell_{p}\left(\mathcal{F}_{P}\right)[P] \in Z_{0}(X)
$$

is such that, if $f: X \rightarrow Y$ is a proper morphism of schemes of finite type over S,

$$
f_{*}[\mathcal{F}]=\left[f_{*}(\mathcal{F})\right]
$$

($[3]$, 15.1.5). Hence it is enough to show that

$$
\begin{equation*}
\operatorname{ch}^{P}\left(\mathcal{O}_{\phi, P}\right)=\ell_{p}\left(\mathcal{O}_{\phi, P}\right)[P] \in \mathrm{CH}_{0}(P)_{\mathbb{Q}} \simeq \mathbb{Q} . \tag{10}
\end{equation*}
$$

Replacing X by an affine neighbourhood of P, we may assume that we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{\alpha} \mathcal{O}_{X}^{2} \xrightarrow{\beta} \mathcal{O}_{X} \longrightarrow \mathcal{O}_{\phi} \longrightarrow 0 \tag{11}
\end{equation*}
$$

Hence the ideal $I_{\phi} \subset \mathcal{O}_{X}(X)$ is generated by two elements β_{1} and β_{2}. Since X is normal, its local rings satisfy Serre property S_{2} and, as $\operatorname{dim}(X)=2, X$ is CohenMacaulay. Since β_{1} and β_{2} span an ideal of height two, $\left(\beta_{1}, \beta_{2}\right)$ is a regular sequence and the sequence (11) is isomorphic to the Koszul resolution of $\mathcal{O}_{\phi}=\mathcal{O}_{X} /\left(\beta_{1}, \beta_{2}\right)$. Now (10) can be deduced from the following general fact:

Lemma 1. Let $X=\operatorname{Spec}(A)$ be an affine scheme and $Z \subset X$ a closed subset such that the ideal $I_{Z}=\left(x_{1}, \ldots, x_{n}\right)$ is generated by a regular sequence $\left(x_{1}, \ldots, x_{n}\right)$. Let $K_{\bullet}\left(x_{1}, \ldots, x_{n}\right)$ be the Koszul complex associated to $\left(x_{1}, \ldots, x_{n}\right)$. Then

$$
\operatorname{ch}_{n}^{Z}\left(K_{\bullet}\left(x_{1}, \ldots, x_{n}\right)\right)=\left[\mathcal{O}_{Z}\right] \in \mathrm{CH}_{0}(Z)_{\mathbb{Q}} .
$$

Proof. The Grassmannian-graph construction on $K_{\bullet}\left(x_{1}, \ldots, x_{n}\right)$ coincides with the deformation to the normal bundle of Z in X. If W is defined as in 1.4,

$$
W_{\infty}=\widetilde{X} \cup \widehat{\mathbb{P}}\left(N_{Z / X}\right)
$$

where \widetilde{X} is the blow up of X along Z, and $\widehat{P}\left(N_{Z / X}\right)$ is the projective completion of the normal bundle of Z in X. The pull back of the Koszul complex $K_{\bullet}\left(x_{1}, \ldots, x_{n}\right)$ to $W \backslash W_{\infty}$ extends to a complex $\widetilde{K}_{\bullet}\left(x_{1}, \ldots, x_{n}\right)$ on W. The restriction of $\widetilde{K}_{\bullet}\left(x_{1}, \ldots, x_{n}\right)$ to \widetilde{X} is acyclic while the restriction of $\widetilde{K}_{\bullet}\left(x_{1}, \ldots, x_{n}\right)$ to $\widehat{\mathbb{P}}\left(N_{Z / X}\right)$ is a resolution of the structure sheaf of the zero section $Z \subset N_{Z / X} \subset$ $\widehat{\mathbb{P}}\left(N_{Z / X}\right)$.

Now observe that $Z \subset \widehat{\mathbb{P}}\left(N_{Z / X}\right)$ is an intersection of Cartier divisors D_{1}, \ldots, D_{n}, hence

$$
\begin{aligned}
& \operatorname{ch}\left(\left.\widetilde{K}_{\bullet}\left(x_{1}, \ldots, x_{n}\right)\right|_{\widehat{\mathbb{P}}\left(N_{Z / X}\right)}\right) \\
= & \prod_{i=1}^{n} \operatorname{ch}\left(\mathcal{O}\left(-D_{i}\right) \rightarrow \mathcal{O}_{\widehat{\mathbb{P}}\left(N_{Z / X}\right)}\right) \\
= & \prod_{i=1}^{n} \operatorname{ch}\left(\mathcal{O}\left(D_{i}\right)\right)
\end{aligned}
$$

Since

$$
\operatorname{ch}\left(\mathcal{O}_{D_{i}}\right)=\operatorname{ch}_{1}\left(\mathcal{O}_{D_{i}}\right)+x_{i}=\left[D_{i}\right]+x_{i}
$$

where x_{i} has degree ≥ 2, we get

$$
\operatorname{ch}\left(\left.\widetilde{K}_{\bullet}\left(x_{1}, \ldots, x_{n}\right)\right|_{\widehat{\mathbb{P}}\left(N_{Z / X}\right)}\right)=\left[D_{1}\right] \ldots\left[D_{n}\right]=[Z] .
$$

This ends the proof of Lemma 1 and Theorem 2.

References

[1] Bott, R., Chern, S.S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114 (1965), 71-112.
[2] Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles I, II, III. Comm. Math. Physics 115 (1988), 49-78, 79-126, 301-351 .
[3] Fulton, W.: Intersection Theory. Springer 1984.
[4] Gillet, H., Soulé, C.: Characteristic classes for algebraic vector bundles with hermitian metrics I, II. Annals of Math. 131 (1990), 163-203, 205-238.
[5] Gillet, H., Soulé, C.: An arithmetic Riemann-Roch theorem. Invent. Math. 110 (1992), 473543.
[6] Gillet, H., Soulé, C.: Direct images in non-archimedean Arakelov theory. Annales de l'institut Fourier, 50, 2000, 363-399.
[7] Soulé, C.: A vanishing theorem on arithmetic surfaces. Invent. Math. 116 (1994), no. 1-3, 577-599.
E-mail address: gillet@uic.edu
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, IL 60607-7045, USA

E-mail address: soule@ihes.fr
IHÉS, 35 route de Chartres, 91440 Bures-Sur-Yvette, France

[^0]: Date: December 10, 2011.
 This material is based upon work supported in part by the National Science Foundation under Grant No. DMS-0901373.

